skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Choudhury, Sagnik Ray"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The reproducibility of scientific articles is central to the advancement of science. Despite this importance, evaluating reproducibility remains challenging due to the scarcity of ground truth data. Predictive models can address this limitation by streamlining the tedious evaluation process. Typically, a paper’s reproducibility is inferred based on the availability of artifacts such as code, data, or supplemental information, often without extensive empirical investigation. To address these issues, we utilized artifacts of papers as fundamental units to develop a novel, dual-spectrum framework that focuses on author-centric and external-agent perspectives. We used the author-centric spectrum, followed by the external-agent spectrum, to guide a structured, model-based approach to quantify and assess reproducibility. We explored the interdependencies between different factors influencing reproducibility and found that linguistic features such as readability and lexical diversity are strongly correlated with papers achieving the highest statuses on both spectrums. Our work provides a model-driven pathway for evaluating the reproducibility of scientific research. 
    more » « less